SINUSP 1.0 Language Specification
Working Draft 1

Daniel Brockman

September 10, 2003

Contents

1 Introduction 1
1.1 History . . . . . . . e 2
1.2 Goals . . .. . . . e 2

2 Memory 3
2.1 Memory Units . . . . . . . . . . L 3
2.2 Accessibility . . . ... ... 3
2.3 Limitations . . . . . . . . . . . .. e 4

3 Syntax 4
3.1 Imstruction Characters . . . . . .. . .. . ... .. ... ..... 5
3.2 The Starting Indicator . . . . . .. ... ... L. 5

4 Execution 5
4.1 Variables . .. . . .. . .. ... 5
4.2 Ticksand Turns . . . . . . . . . . . . . . . . 6

5 Instructions 6
51 CoOrReE SNUSP . . . . . . . . . 6
5.2 MODULAR SNUSP . . . . . . . .. .. 7
5.3 BLOATED SNUSP . . . .. . .. . . . i 8

1 Introduction

The SNUSP language was created in September, 2003 to develop a complete
and utter fucking waste of time. (The name SNUSP is a recursive acronym for
“SNUSP’s Not UNIX, but Structured PATH.”) We are currently evaluating the
possibilities of developing a SNUSP operating system kernel. However, variants
of the SNUSP system, which use the LINUX kernel, are already in use; though
these systems are often referred to as “LINUX,” they are more accurately called
“SNUSP/LINUX systems.”

Issue: This is not even funny. How do you write an introduction to something
like this?



1.1 History

One rainy night in August, 2003, Francis Rogers was sitting in his apartment
in [where his lives] experimenting with C. Inspired by the remarkably beautiful
and symmetrical eight-instruction classic BRAINFUCK, as well as the crazy multi-
dimensional stack-shuffling language BEFUNGE, he was writing an interpreter for
a language he would later come to call PATH. Borrowing the basic instructions
and linear memory model from BRAINFUCK, and the two-dimensional code space
from BEFUNGE, he created a language both simple to understand and simple
to use. Once Rogers realized that he had created something interesting—that
is, once he got the interpreter to run a spectacular bell-emmitting program—he
immediately posted the source code and a quick rundown on the language to
the Something Awful Forums® for peer review.

PATH was highly appreciated as a respectable middle-ground by everyone
who adored BRAINFUCK but was scared by BEFUNGE (or vice versa), and a
few who seemed new to programming but decided to pick up PATH because it
looked so cute. Not very surprisingly, everyone else thought the language looked
horribly obfuscated, and immediately started to question the sanity of everyone
involved with its development. Nevertheless, several PATH tools created by
enthusiasts popped up over the course of a week: interpreters written in C,
C++4, PERL, and JAvA; debuggers for Tk, WINDOWS, and SWING; and a simple
web-based interpreter interface written in PHP.

The original PATH was not perfect, however, and as more suggestions for
improving PATH were made and implemented by the interpreter writers, the
language borders started to blur. Every PATH coder had his own flavour—
SNUSP was one of the more well-defined ones—but noone could say what
PATH really was anymore. To sort out this mess, Rogers announced that he
wished to keep the name “PATH” for his original version of the language, and
asked everybody who wanted changes to fork off under a new name (no pun
intended). This opened the door for the SNUSP project to begin serious work
on defining a completely independent new language derived from traditional
ParH.

1.2 Goals

The SNUSP language, with its roots in PATH, is intended to be an aesthetically
pleasing, modular language with an orthogonal instruction set and a bright
future. This specification defines three increasingly sophisticated levels of the
SNUSP language:

Core SNUSP is—like traditional PATH—essentially a modification of BRAIN-
FUCK to use a two-dimensional code space;

Modular SNUSP is an extension of CORE SNUSP, adding a subroutine
mechanism; finally,

Bloated SNUSP is an extension of MODULAR SNUSP, adding support for
indeterminism, concurrency, and a second data memory dimension.

l<nttp://forums.somethingawful.com/>



The first and second levels are theoretically complete; it it unlikely that
future versions of this specification will alter them. The third level, on the
other hand, is specifically designated for new features—particularly ones that
add bloat.

Plans exist on developing a standard library in MoDULAR SNUSP, with
the goal of increasing the viability of SNUSP as a development platform for
mission-critical applications. It will factor out certain basic building blocks and
provide subroutines for mathematical functions, string manipulation, etc.

2 Memory
There are three kinds of run-time memory in SNUSP:

code space contains run-time representations of program source;

data memory (or simply “memory”) contains integers that are accessed and
modified by SNUSP programs when carrying out their task; finally,

the call stack (used in MoDULAR SNUSP) is, in familiar terms, a FILO
queue storing the return addresses of subroutine calls, i.e., enter instruc-
tions.

2.1 Memory Units

Code space and data memory are both two-dimensional and made up of units
called, respectively, code cells and data cells. The call stack is one-dimensional
and made up of stack frames.

Note: The second data memory dimension can be exploited only by programs
written in BLOATED SNUSP. In lower levels of SNUSP, data memory is
effectively one-dimensional, since the data pointer can only move in two
opposite directions—left and right.

Note: The term “stack frame” normally refers to both the return address and
the local data of a subroutine. However, in SNUSP there is no such
thing as “local data,” and return addresses are completely separated from
data memory. As a practical convention, most subroutines guarantee the
invariance of previous memory; but since the language does not actually
define subroutines, there is nothing to enforce this.

2.2 Accessibility

Unlike in BEFUNGE, code space is completely inaccessible for inspection or
change by SNUSP programs; it is only used internally by the interpreter. Thus,
once the interpreter has loaded a program, code space does not change until an-
other program is loaded.

Data memory, on the other hand, is completely accessible to SNUSP pro-
grams as mutable working storage—just like in BRAINFUCK.

The call stack is accessible to SNUSP programs as a side-effect of the enter
and leave instructions. However, it cannot be randomly accessed.



2.3 Limitations

The following limitations apply to the three memory sections:

e Code space is bounded in all directions, and it is impossible for the in-
struction pointer to point outside it.

e Data memory can grow as large as physical memory restrictions allow it
to. However, it is bounded in both dimensions: If at any point the number
of times the data pointer has been moved to the left exceeds the number of
times it has been moved to the right, the resulting behavior is undefined.
The equivalent is true for the orthogonal dimension: The number of moves
upwards must not exceed the number of moves downwards.

Rationale: This does not practically impose a limit on normal SNUSP
programs, but simplifies the implementation of interpreters.

Issue: This is the most obvious irregulatity that I know about in the
SNUSP language. Should we define what happens if the data pointer
falls off ? We have three choices:

— Leave it undefined. This leaves a hole in the language, but maybe
this is the way it should be.

— Define the behavior. Terminating the process seems to be the
only reasonable choice here, but it is not elegant.

— Remove the boundaries altogether, eliminating the issue. This
seems to be the most elegant solution. Can you live with this,
interpreter writers?

e The call stack is unbounded and can grow as high as physical memory
limitations allow it to.

3 Syntax

SNUSP source files are read and transplanted into code space one line at a time.
A conforming SNUSP interpreter is required to recognize all of the following
character sequences as end-of-line indicators:

e carriage return (13), line feed (10)
e carriage return (13)

e line feed (10)

Further, when loading a source file, conforming interpreters must behave as
if all lines were padded to the right with spaces (32), so as to make all lines
equally long.



3.1 Instruction Characters

When each line is read into code memory from the source file, the source char-
acters are translated to instructions according to the following table:

| ASCII Glyph Instruction ]

BLOATED SNUSP
37 % rand
38 & split
59 ; down
58 : up

MoDULAR SNUSP
64 6] enter
35 # leave

Core SNUSP

62 > right
60 < left

43 + incr
45 - decr
44 s read
46 . write
47 / ruld
92 \ lurd
33 ! skip
63 7 skipz
32 noop
61 = noop
124 | noop

All other characters translate to noop instructions.

3.2 The Starting Indicator

The starting indicator tells the interpreter where to begin execution. If the
source file contains any dollar signs (36), the first one to appear is the starting
indicator; otherwise, the first character—whatever it may be—is the starting
indicator.

4 Execution

A SNUSP program may be executed indirectly through an interpreter, or di-
rectly as a stand-alone process with a built-in interpreter. In any case, when
a SNUSP program is invoked, there is no way to pass arguments to it; the
only way to give it input it is through the standard input stream. The program,
however, can give output—apart from through the standard output stream—via
the process exit code.

4.1 Variables

During execution three variables are used to keep track of the program state,
apart from the various kinds of memory:



the instruction pointer that points to an instruction in code space called the
current instruction,

the data pointer that points to a cell in data memory called the current data
cell, and

the current direction that indicates direction in which the instruction pointer
is moving.

Todo: Maybe add a section about threads here.

4.2 Ticks and Turns

At the start of execution, a thread is created, its instruction pointer is set to
point to the cell that contains the starting indicator, and its current direction
is set to right. Its call stack starts out empty and the data memory originally
contains nothing but zeroes.

Execution of a SNUSP program is then carried out in small steps called
ticks. Each thread gets one turn per tick, but the order in which the turns are
taken is undefined. The thread that is currently taking its turn is called the
active thread. A turn proceeds as follows:

1. The current instruction is carried out.

2. The instruction pointer is moved one step in the current direction unless
this would cause the instruction pointer to point outside code space, in
which case the active thread is stopped.

When a thread is stopped, all its resources are released and it ceases taking
turns. When all threads are stopped, the process terminates with the exit code
set to the value of the current memory cell of the last thread to take a turn.

5 Instructions

All instructions in SNUSP are atomic, in the sense that there are no real syntac-
tic or semantic restrictions on how they are to be combined. Some instructions
access and/or mutate the current memory cell, but no other parts of data mem-
ory are ever touched.

The noop instruction is special, as it actually denotes lack of any instruction
at all:

noop ( , |, =) Do nothing.

5.1 Core SNUSP

The first six instructions in this set—Ileft, right, incr, decr, read, and write—
are identical to their BRAINFUCK counterparts. The remaining four—ruld,
lurd, skip, and skipz—replace the pair of looping instructions found in BRAIN-
FUCK—L[ and ]—as general-purpose flow control instructions that can be com-
bined to create loops and similar code structures.

left (>) Move the data pointer one cell to the left.



right (<) Move the data pointer one cell to the right.

incr (+) If the value of the current data cell is less than the maximum allowed
value, increment it; otherwise, set it to zero.

decr (-) If the value of the current data cell is greater than zero, decrement it;
otherwise, set it to the maximum allowed value.

read (,) Read a byte from standard input and put it in the current data cell.
If the input stream is exhausted, block until more data becomes available.

write (.) If the value of the current data cell is representable by a single
byte, write this byte to standard output. Otherwise, the behavior is
implementation-defined.

Issue: Ruling run-time errors out, there are a number of different meth-
ods for squeezing a 32-bit value into a byte:

e doing it modulo the mazimum value,
e outputting zero, and
e outputting the maximum value.

Should we choose one of these?

ruld (\) If the current direction is

e left, change it to up

e right, change it to down,

andu hh h



The following example demonstrates how to implement a subroutine called
ECHO, using the enter and leave instructions, and how to call it twice from the
main program execution path:

==! /======ECHO== ,==.==

$==>==0/==0/==<==

5.3 Bloated SNUSP

This level adds four new instructions, for a grand total of sixteen SNUSP
instructions. The first two simply add ways of moving through the second data
memory dimension; this is particularly useful in the context of concurrency,
which is provided by another instruction for starting new threads. The last
instruction provides a way to obtain random numbers in arbitrary ranges.

up (:) Move the data pointer one cell upwards.
down (;) Move the data pointer one cell downwards.

split (&) Create a new thread, and move the instruction pointer of the old
thread one step in the current direction.

rand (%) Set the value of the current data cell to a random number between
zero and the current value of the cell, inclusive.

All threads share a single code space and a single data memory; however,
each thread has its own instruction pointer, direction, memory pointer, and call
stack. Upon thread creation, the instruction pointer, direction, and memory
pointer is copied from the creating thread; the call stack, on the other hand, is
created empty.

Todo: Some or all of the above should be moved.

The following example demonstrates how to print “!” until a key is pressed,

using two concurrent threads:

[==.==<==\
I I
[+ttt == \==>==="1 /==<<==
\+++++++++++\
$==>==+++++++++++/ \==D>== ==

B



